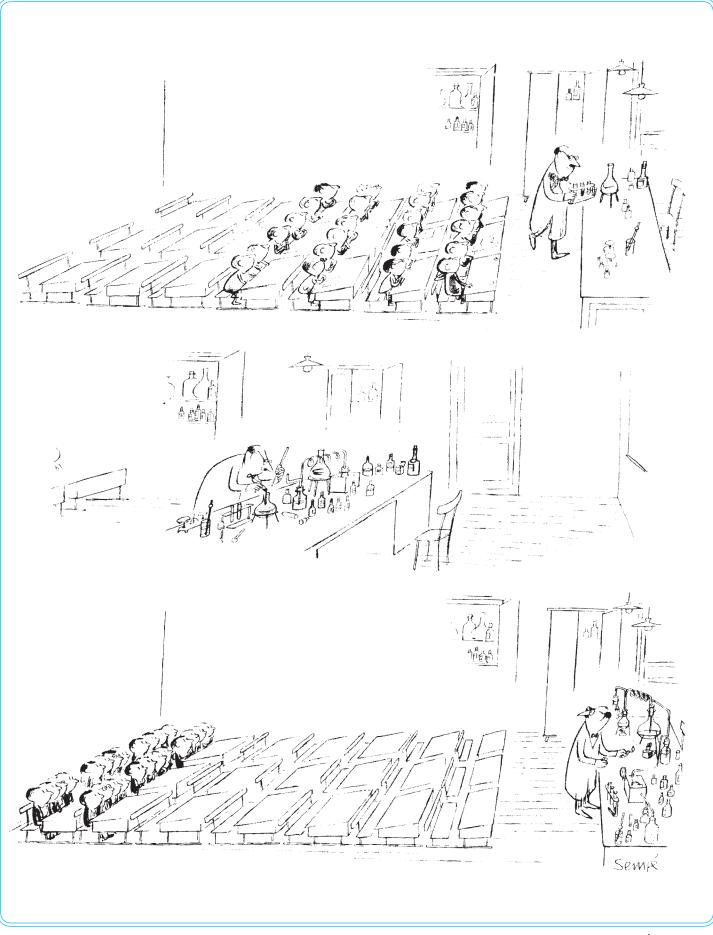

Quantitative Chemical Analysis

Ninth Edition

Daniel C. Harris



								18
of	th	e E	ler	ne	nts			2 4.2 0.95
Ato	omic Mass Inter	val	13	14	15	16	17	0.176 [¤] IC Helium
	007 84; 1.008 [·] 038; 6.997]	11]	5 +3	6 ±4,2	7 ±3,5,4,2	8 -2	9 -1	4.002 602 ±2
	.806; 10.821] .009 6; 12.011	61	4275	4470	77	90	85	27
N [14]	.006 43; 14.00)7 ² 8]	2300 2.34	4100 2.62	63 1.234 [¤]	⁵⁰ 1.410 [¤]	53 1.674 [¤]	²⁵ 0.889 [¤] NC
	.999 03; 15.99 .084; 28.086]	9 77]	Boron 10.814 ±8	Carbon 12.010 6 ±10	Nitrogen 14.006 8 ±4	Oxygen	Fluorine 18.998 403 2 ±5	Neon 20.179 7 ±6
S [32	.059; 32.076]		13 +3	14 +4	15 ±3,5,4	16 ±2,4,6	17 ±1,3,5,7	18
	.446; 35.457] 4.382; 204.38	5]	2793	3540	550	718	239	87
			933 2.70	1685 2.33	317 1.82	388 2.07	172 3.12 [¤]	⁸⁴ 1.760 [¤] A
10	11	12	Aluminum 26.981 538 6 ±8	Silicon 28.085	Phosphorus 30.973 762 ±2	Sulfur 32.068 ±9	Chlorine 35.452 ±6	Argon 39.948
28 +2,3	29 +2,1	30 +2	31 +3	32 ⁺⁴	33 ±3,5	34 -2,4,6	35 ±1,5	36
	2836 1358	1180 693 7n	²⁴⁷⁸ 303	³¹⁰⁷ Ge		958 494 So	332 266 Rr	120 116 Kr
8.90	8.96	7.14	5.91	5.32		4.80	3.12	3.69 [¤]
Nickel 58.693 4 ±4	Copper 63.546 ±3	Zinc 65.38 ±2	Gallium 69.723	Germanium 72.63	Arsenic 74.921 60 ±2	Selenium 78.96 ±3	Bromine 79.904	Krypton 83.798 ±2
46 +2,4	47 ⁺¹	48 +2	49 +3	50 +4,2	51 ±3,5	52 -2,4,6	53 ±1,5,7	54
		1040 594	2346 430	²⁸⁷⁶ 505 Sn	¹⁸⁶⁰ 904 Sh	1261 723 To	458 387	165 161 X
12.0	10.5	8.65	7.31	7.30	6.68 UN	6.24	4.92	5.78 [¤]
Palladium 106.42	Silver 107.868 2 ±2	Cadmium 112.411 ±8	Indium 114.818 ±3	Tin 118.710 ±7	Antimony 121.760	Tellurium 127.60 ±3	lodine 126.904 47 ±3	Xenon 131.293 ±6
78 +2,4	79 +3,1	80 +2,1	81 +3,1	82 +4,2	83 +3,5	84 +4,2	85 ±1,3,5,7	86
	3130 1338		1746 577	²⁰²³ Ph	¹⁸³⁷ Ri	¹²³⁵ 527 P	610 575	²¹¹ 202 Rn
21.4	19.3	13.5	11.85	11.4	9.8	9.4		9.78 [¤]
Platinum 195.084 ±9	Gold 196.966 569 ±4	Mercury 200.59 ±2	Thallium 204.384 ±2	Lead 207.2	Bismuth 208.980 40	Polonium (209)	Astatine (210)	Radon (222)
110	111	112	113	114	115	116	117	118
= Ds		= Cn		_ FI				
Darmstadtium (281)	Roentgenium (280)	Copernicium (285)	(284)	Flerovium (289)	(288)	Livermorium (293)	(294)	(294)

64	+3	65	+3,4	66	+3	67	+3	68	+3	69	+3,2	70	+3,2	71	+3
3539 1585	24	3496 1630	Th	2835 1682		2968 1743	Ho	3136 1795	Er	2220 • 1818	Tm	1467 1097	Vh	3668 1936	1.11
7.89 Gadoli		8.27	erbium	8.54 Dvs	prosium	8.80 Ho		9.05 Fr	bium	9.33 Th	ulium	6.98 Vtt	erbium	9.84	tetium
157.2			925 35 ±2	-	62.500		930 32 ±2		259 ±3		34 21 ±2		8.054 ±5		4.966 8
00		-										4.04	•		
96	+3	97	+4,3	98	+3	99		100		101		102	2	103	3
96 1340 13.5	+3	97 	+4,3	98 900	r3	99 	Es	100 [Fm	101 [Md	102 	No	103 	Lr

Quantitative Chemical Analysis

Quantitative Chemical Analysis

Ninth Edition

Daniel C. Harris

Michelson Laboratory, China Lake, California

Charles A. Lucy

Contributing Author University of Alberta, Edmonton, Alberta

W. H. Freeman & Company

A Macmillan Education Imprint

Publisher: Kate Parker Senior Acquisitions Editor: Lauren Schultz Development Editors: Brittany Murphy, Anna Bristow Editorial Assistant: Shannon Moloney Photo Editor: Cecilia Varas Photo Researcher: Richard Fox Cover and Text Designer: Vicki Tomaselli Project Editor: J. Carey Publishing Service Manuscript Editor: Marjorie Anderson Illustrations: Network Graphics, Precision Graphics Illustration Coordinators: Matthew McAdams, Janice Donnola Production Coordinator: Julia DeRosa Composition and Text Layout: Aptara®, Inc. Printing and Binding: RR Donnelley Front Cover/Title Page Photo Credit: © The Natural History Museum/The Image Works Back Cover Photo Credit: Pascal Goetgheluck/Science Source

Library of Congress Control Number: 2014950382 ISBN-13: 978-1-4641-3538-5 ISBN-10: 1-4641-3538-X

 $\ensuremath{\textcircled{\sc 0}}$ 2016, 2010, 2007, 2003 by W. H. Freeman and Company All rights reserved

Printed in the United States of America First Printing

W. H. Freeman and Company 41 Madison Avenue New York, NY 10010

www.whfreeman.com

BRIEF CONTENTS

0	The Analytical Process
1	Chemical Measurements
2	Tools of the Trade
3	Experimental Error
4	Statistics
5	Quality Assurance and Calibration Methods
6	Chemical Equilibrium
7	Let the Titrations Begin
8	Activity and the Systematic Treatment of Equilibrium
9	Monoprotic Acid-Base Equilibria
10	Polyprotic Acid-Base Equilibria
11	Acid-Base Titrations
12	EDTA Titrations
13	Advanced Topics in Equilibrium
14	Fundamentals of Electrochemistry
15	Electrodes and Potentiometry
16	Redox Titrations

1	17	Electroanalytical Techniques	395
10	18	Fundamentals of Spectrophotometry	432
24		spectrophotometry	432
46	19	Applications of Spectrophotometry	461
64	20	Spectrophotometers	491
95	21	Atomic Spectroscopy	529
119	22	Mass Spectrometry	559
145	23	Introduction to Analytical Separations	604
161	24	Gas Chromatography	633
187	25	High-Performance Liquid Chromatography	667
107	26	Chromatographic Methods and Capillary Electrophoresis	713
211			
233	27	Gravimetric and Combustion Analysis	751
265	28	Sample Preparation	771
287	Note	es and References	NR1
	Glos	sary	GL1
306	App	endixes	AP1
	Solu	tions to Exercises	S 1
338	Ansı	vers to Problems	AN1
374	Inde	ex	- 11

this page left intentionally blank

CONTENTS

0 The Analytical Process 1 How Does a Home Pregnancy Test Work? 1 0-1 The Analytical Chemist's Job 2 0-2 General Steps in a Chemical Analysis 8 EXX.01 Constructing a Representative Sample 8 1 Chemical Measurements 10 Biochemical Measurements with a Nanoelectrode 10 1-1 SI Units 10 1-2 Chemical Concentrations 13 1-3 Preparing Solutions 16 1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures 00 0-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel 42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 45 3 Experimental Error 46	Connec Preface	tions: Maria Goeppert Mayer	xiv xv
How Does a Home Pregnancy Test Work? 1 0-1 The Analytical Chemist's Job 2 0-2 General Steps in a Chemical Analysis 8 EX.01 Constructing a Representative Sample 8 1 Chemical Measurements 10 Biochemical Measurements with a Nanoelectrode 10 1-1 SI Units 10 1-2 Chemical Concentrations 13 1-3 Preparing Solutions 16 1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures 0 0-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Mi			
0-1The Analytical Chemist's Job20-2General Steps in a Chemical Analysis8BOX 0-1Constructing a Representative Sample81Chemical Measurements101-1SI Units101-2Chemical Concentrations131-3Preparing Solutions161-4Stoichiometry Calculations for Gravimetric Analysis182Tools of the Trade24Quartz Crystal Microbalance Measures One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel®392-11Graphing with Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures in Arithmetic473-3Types of Error4980X 3-1Case Study in Ethics: Systematic Error in Ozone Measurement5080X 3-1Case Study in Ethics: Systematic Error in Ozone Measurement508-3.4Propagation of Uncertainty from Random Error52	0 The	e Analytical Process	1
0-2 General Steps in a Chemical Analysis 8 EXX.0-1 Constructing a Representative Sample 8 1 Chemical Measurements 10 Biochemical Measurements with a Nanoelectrode 10 1-1 SI Units 10 1-2 Chemical Concentrations 13 1-3 Preparing Solutions 16 1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures One Base Added to DNA 24 2-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel [®] 39 2-11 Graphing with Microsoft Excel [®] 39	How D	oes a Home Pregnancy Test Work?	1
EOX 0-1Constructing a Representative Sample81Chemical Measurements10Biochemical Measurements with a Nanoelectrode101-1SI Units101-2Chemical Concentrations131-3Preparing Solutions161-4Stoichiometry Calculations for Gravimetric Analysis182Tools of the Trade24Quartz Crystal Microbalance Measures One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error58	0-1	The Analytical Chemist's Job	2
1Chemical Measurements10Biochemical Measurements with a Nanoelectrode101-1SI Units101-2Chemical Concentrations131-3Preparing Solutions161-4Stoichiometry Calculations for Gravimetric Analysis182Tools of the Trade24Quartz Crystal Microbalance Measures24One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error58	0-2	General Steps in a Chemical Analysis	8
Biochemical Measurements with a Nanoelectrode 10 1-1 SI Units 10 1-2 Chemical Concentrations 13 1-3 Preparing Solutions 16 1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures 00 One Base Added to DNA 24 2-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel [®] 39 2-11 Graphing with Microsoft Excel [®] 39 2-11 Graphing with Microsoft Excel [®] 39 2-11 Graphing cherror 46 3-2 Significant Figures in Arithmeti	BOX 0-	Constructing a Representative Sample	8
1-1SI Units101-2Chemical Concentrations131-3Preparing Solutions161-4Stoichiometry Calculations for Gravimetric Analysis182Tools of the Trade24Quartz Crystal Microbalance Measures24Quartz Crystal Microbalance Measures24Quartz Crystal Microbalance Measures242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50Sot 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	1 Ch	emical Measurements	10
1-2 Chemical Concentrations 13 1-3 Preparing Solutions 16 1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures One Base Added to DNA 24 2-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel® 39 2-11 Graphing with Microsoft Excel 42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 45 3 Experimental Error 46 3-1 Significant Figures 46 3-2 Significant Figures in Arithmetic 47 3-3 Types of Error 49 <	Biochei	mical Measurements with a Nanoelectrode	10
1-3 Preparing Solutions 16 1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures 24 Quartz Crystal Microbalance Measures 24 Quartz Crystal Microbalance Measures 24 2-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel® 39 2-11 Graphing with Microsoft Excel 42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 45 3 Experimental Error 46 3-1 Significant Figures 46 3-2 Significant Figures in Arithmetic 47 3-3 Typ	1-1	SI Units	10
1-4 Stoichiometry Calculations for Gravimetric Analysis 18 2 Tools of the Trade 24 Quartz Crystal Microbalance Measures 24 Quartz Crystal Microbalance Measures 24 2-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel® 39 2-11 Graphing with Microsoft Excel 42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 45 3 Experimental Error 46 3-1 Significant Figures 46 3-2 Significant Figures in Arithmetic 47 3-3 Types of Error 49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement 50	1-2	Chemical Concentrations	13
Gravimetric Analysis182 Tools of the Trade24Quartz Crystal Microbalance Measures One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel392-11Graphing with Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	1-3	Preparing Solutions	16
2 Tools of the Trade24Quartz Crystal Microbalance Measures One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	1-4	-	
Quartz Crystal Microbalance Measures24One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42REFERENCE PROCEDURECalibrating a 50-mL Buret453Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58		Gravimetric Analysis	18
One Base Added to DNA242-1Safe, Ethical Handling of Chemicals and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error 463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	2 Too	ols of the Trade	24
2-1 Safe, Ethical Handling of Chemicals and Waste 25 2-2 The Lab Notebook 25 2-3 Analytical Balance 26 2-4 Burets 29 2-5 Volumetric Flasks 31 2-6 Pipets and Syringes 32 2-7 Filtration 36 2-8 Drying 37 2-9 Calibration of Volumetric Glassware 38 2-10 Introduction to Microsoft Excel [®] 39 2-11 Graphing with Microsoft Excel 42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 45 3 Experimental Error 46 3-1 Significant Figures 46 3-2 Significant Figures in Arithmetic 47 3-3 Types of Error 49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement 50 BOX 3-2 Certified Reference Materials 51 3-4 Propagation of Uncertainty from Random Error 52 3-5 Propagation of Uncertainty from Systematic Error 58	Quartz	Crystal Microbalance Measures	
and Waste252-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error 463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	One Ba	se Added to DNA	24
2-2The Lab Notebook252-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error 463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	2-1	e	
2-3Analytical Balance262-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error 463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-4Burets292-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 3Experimental Error46 3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-5Volumetric Flasks312-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 3Experimental Error46 3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58		-	
2-6Pipets and Syringes322-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 3 Experimental Error46 3-1Significant Figures463-1Significant Figures in Arithmetic3-1Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-7Filtration362-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret3Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-8Drying372-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret 3Experimental Error46 3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2Certified Reference Materials 513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-9Calibration of Volumetric Glassware382-10Introduction to Microsoft Excel392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error46 3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-10Introduction to Microsoft Excel®392-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error46 3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
2-11Graphing with Microsoft Excel42 REFERENCE PROCEDURE Calibrating a 50-mL Buret45 3Experimental Error46 3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50 BOX 3-2 Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
REFERENCE PROCEDURECalibrating a 50-mL Buret453 Experimental Error463-1 Significant Figures463-2 Significant Figures in Arithmetic473-3 Types of Error49BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2 Certified Reference Materials513-4 Propagation of Uncertainty from Random Error523-5 Propagation of Uncertainty from Systematic Error58			
3 Experimental Error46Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
Experimental Error463-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	REFERE	NCE PROCEDURE Calibrating a 50-mL Buret	45
3-1Significant Figures463-2Significant Figures in Arithmetic473-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Errorin Ozone Measurement50BOX 3-2Certified Reference Materials3-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	3 Exp	perimental Error	46
 3-2 Significant Figures in Arithmetic 3-3 Types of Error 49 BOX 3-1 Case Study in Ethics: Systematic Error in Ozone Measurement 50 BOX 3-2 Certified Reference Materials 3-4 Propagation of Uncertainty from Random Error 3-5 Propagation of Uncertainty from Systematic Error 58 	Experin	nental Error	46
3-3Types of Error49BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	3-1	Significant Figures	46
BOX 3-1Case Study in Ethics: Systematic Error in Ozone Measurement50BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	3-2	Significant Figures in Arithmetic	47
in Ozone Measurement 50 BOX 3-2 Certified Reference Materials 51 3-4 Propagation of Uncertainty from Random Error 52 3-5 Propagation of Uncertainty from Systematic Error 58	3-3	Types of Error	49
BOX 3-2Certified Reference Materials513-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58	BOX 3-		50
3-4Propagation of Uncertainty from Random Error523-5Propagation of Uncertainty from Systematic Error58			
Random Error523-5Propagation of Uncertainty from Systematic Error58		—	51
3-5Propagation of Uncertainty from Systematic Error58	3-4		50
Systematic Error58	3_5		54
	5-5		58
	BOX 3-3	-	5 9

4 Statistics 64 Is My Red Blood Cell Count High Today? 64 4-1 Gaussian Distribution 65 4-2 Comparison of Standard Deviations with the F Test 69 BOX 4-1 Choosing the Null Hypothesis in Epidemiology 71 4-3 Confidence Intervals 71 4-4 Comparison of Means with Student's t 74 79 4-5 *t* Tests with a Spreadsheet 4-6 Grubbs Test for an Outlier 80 4-7 The Method of Least Squares 81 4-8 Calibration Curves 84 BOX 4-2 Using a Nonlinear Calibration Curve 86 4-9 A Spreadsheet for Least Squares 87

5 Quality Assurance and Calibration Methods

The Ne	ed for Quality Assurance	95
5-1	Basics of Quality Assurance	96
BOX 5-	1 Medical Implication of False	
	Positive Results	97
BOX 5-	2 Control Charts	99
5-2	Method Validation	100
BOX 5-	3 The Horwitz Trumpet: Variation in	
	Interlaboratory Precision	104
5-3	Standard Addition	106
5-4	Internal Standards	109
6 Ch	emical Equilibrium	119

Chemi	cal Equilibrium in the Environment	119
6-1	The Equilibrium Constant	120
6-2	Equilibrium and Thermodynamics	121
6-3	Solubility Product	124
BOX 6-	Solubility Is Governed by More Than the	
	Solubility Product	125
DEMO	STRATION 6-1 Common Ion Effect	125
6-4	Complex Formation	126
BOX 6-	2 Notation for Formation Constants	127
6-5	Protic Acids and Bases	129
6-6	pH	132
6-7	Strengths of Acids and Bases	133
DEMO	STRATION 6-2 The HCl Fountain	134
BOX 6-	3 The Strange Behavior of	
	Hydrofluoric Acid	135
BOX 6-	4) Carbonic Acid	137

95

7 Let the Titrations Begin 145

Titratio	n on Mars	145
7-1	Titrations	145
BOX 7-	Reagent Chemicals and Primary Standards	147
7-2	Titration Calculations	147
7-3	Precipitation Titration Curves	149
7-4	Titration of a Mixture	153
7-5	Calculating Titration Curves with a Spreadsheet	154
7-6	End-Point Detection	155
DEMO	NSTRATION 7-1 Fajans Titration	156

161

8 Activity and the Systematic Treatment of Equilibrium

Hydrat	ed lons	161
8-1	The Effect of Ionic Strength on	
	Solubility of Salts	162
DEMO	NSTRATION 8-1) Effect of Ionic Strength on Ion	
	Dissociation	162
BOX 8-	1 Salts with lons of Charge $ \geq 2 $ Do Not	
	Fully Dissociate	164
8-2	Activity Coefficients	164
8-3	pH Revisited	168
8-4	Systematic Treatment of Equilibrium	169
BOX 8-	2 Calcium Carbonate Mass Balance in Rivers	172
8-5	Applying the Systematic Treatment	
	of Equilibrium	172

9 Monoprotic Acid-Base Equilibria 187

Measu	ing pH Inside Cellular Compartments	187
9-1	Strong Acids and Bases	188
BOX 9-	Concentrated HNO ₃ Is Only	
	Slightly Dissociated	188
9-2	Weak Acids and Bases	190
9-3	Weak-Acid Equilibria	191
BOX 9-	2 Dyeing Fabrics and the Fraction	
	of Dissociation	194
9-4	Weak-Base Equilibria	195
9-5	Buffers	196
BOX 9-	3 Strong Plus Weak Reacts Completely	199
DEMON	ISTRATION 9-1 How Buffers Work	201

10 Polyprotic Acid-Base Equilibria 211

Carbon	Dioxide in the Air	211
10-1	Diprotic Acids and Bases	212
BOX 10	-1 Carbon Dioxide in the Ocean	214
BOX 10	-2 Successive Approximations	217
10-2	Diprotic Buffers	219
10-3	Polyprotic Acids and Bases	220
10-4	Which Is the Principal Species?	222

10-5	Fractional Composition Equations	223
BOX 10	3 Microequilibrium Constants	224
10-6	Isoelectric and Isoionic pH	226
BOX 10	4) Isoelectric Focusing	228
11 A	cid-Base Titrations	233
Acid-Ba	se Titration of RNA	233
11-1	Titration of Strong Base with Strong Acid	234
11-2	Titration of Weak Acid with Strong Base	236
11-3	Titration of Weak Base with Strong Acid	238
11-4	Titrations in Diprotic Systems	240
11-5	Finding the End Point with a	
	pH Electrode	243
BOX 11-	Alkalinity and Acidity	244
11-6	Finding the End Point with Indicators	247
BOX 11-	2 What Does a Negative pH Mean?	248
DEMON	STRATION 11-1 Indicators and the	
	Acidity of CO ₂	249
11-7	Practical Notes	251
11-8	Kjeldahl Nitrogen Analysis	251
BOX 11-	3 Kjeldahl Nitrogen Analysis Behind	
	the Headlines	252
11-9	The Leveling Effect	253
11-10	Calculating Titration Curves with	
	Spreadsheets	254
REFERE	NCE PROCEDURE) Preparing Standard Acid and Base	263

12 EDTA Titrations 265

Chelatio	on Therapy and Thalassemia	265
12-1	Metal-Chelate Complexes	266
12-2	EDTA	268
12-3	EDTA Titration Curves	271
12-4	Do It with a Spreadsheet	273
12-5	Auxiliary Complexing Agents	274
BOX 12	Metal Ion Hydrolysis Decreases the Effective Formation Constant	
	for EDTA Complexes	276
12-6	Metal Ion Indicators	277
DEMON	STRATION 12-1 Metal Ion Indicator Color	
	Changes	280
12-7	EDTA Titration Techniques	280
BOX 12	2 Water Hardness	281

13 Advanced Topics in Equilibrium 287

Acid Ra	in	287
13-1	General Approach to Acid-Base Systems	288
13-2	Activity Coefficients	291
13-3	Dependence of Solubility on pH	294
13-4	Analyzing Acid-Base Titrations with	
	Difference Plots	298

14 Fundamentals of Electrochemistry

Lithium	-Ion Battery	306
14-1	Basic Concepts	307
BOX 14	-1) Ohm's Law, Conductance, and	
	Molecular Wire	310
14-2	Galvanic Cells	311
DEMON	STRATION 14-1 The Human Salt Bridge	314
BOX 14	-2 Hydrogen-Oxygen Fuel Cell	315
BOX 14	-3 Lead-Acid Battery	316
14-3	Standard Potentials	316
14-4	Nernst Equation	318
BOX 14	-4) E° and the Cell Voltage Do Not Depend	
	on How You Write the Cell Reaction	320
BOX 14	-5 Latimer Diagrams: How to Find E°	
	for a New Half-Reaction	321
14-5	E° and the Equilibrium Constant	322
BOX 14	6 Concentrations in the Operating Cell	323
14-6	Cells as Chemical Probes	324
14-7	Biochemists Use E°	327

15 Electrodes and Potentiometry 338

DNA Sequencing by Counting Protons		338		
15-1	Reference Electrodes	339		
15-2	15-2 Indicator Electrodes			
DEMON	STRATION 15-1 Potentiometry with an			
	Oscillating Reaction	343		
15-3	What Is a Junction Potential?	343		
15-4	How Ion-Selective Electrodes Work	345		
15-5	pH Measurement with a Glass Electrode	347		
BOX 15	1) Systematic Error in Rainwater pH			
	Measurement: Effect of Junction Potential	353		
15-6	Ion-Selective Electrodes	354		
BOX 15	2 Measuring Selectivity Coefficients for			
	an Ion-Selective Electrode	355		
BOX 15	-3 How Was Perchlorate Discovered on Mars?	359		
BOX 15	-4 Ion-Selective Electrode with Electrically			
	Conductive Polymer for a Sandwich			
	Immunoassay	361		
15-7	Using Ion-Selective Electrodes	363		
15-8	Solid-State Chemical Sensors	364		
16 R	edox Titrations	374		

Chemical Analysis of High-TemperatureSuperconductors37416-1The Shape of a Redox Titration Curve375BOX 16-1Many Redox Reactions Are Atom-Transfer
Reactions37616-2Finding the End Point378DEMONSTRATION 16-1Potentiometric Titration
of Fe²⁺ with MnO₄379

16-4 Oxidation with Potassium Permanganate	
	382
16-5 Oxidation with Ce^{4+}	384
16-6 Oxidation with Potassium Dichromate	385
16-7 Methods Involving Iodine	385
BOX 16-2 Environmental Carbon Analysis and	
Oxygen Demand	386
BOX 16-3 Iodometric Analysis of High-Temperature	
Superconductors	389
17 Electroanalytical Techniques	395
How Sweet It Is!	395
17-1 Fundamentals of Electrolysis	396
DEMONSTRATION 17-1 Electrochemical Writing	396
BOX 17-1 Metal Reactions at Atomic Steps	402
17-2 Electrogravimetric Analysis	402
17-3 Coulometry	405
17-4 Amperometry	407
BOX 17-2 Clark Oxygen Electrode	408
BOX 17-3 What Is an "Electronic Nose"?	408
17-5 Voltammetry	412
BOX 17-4 The Electric Double Layer	415
BOX 17-5 Aptamer Biosensor for Clinical Use	417
17-6 Karl Fischer Titration of H_2O	422
18 Fundamentals of	
18 Fundamentals of Spectrophotometry	432
Spectrophotometry	432
Spectrophotometry The Ozone Hole	432 433
Spectrophotometry The Ozone Hole 18-1 Properties of Light	432 433
Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light	432 433 434
Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation	432 433 434 436
Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration?	432 433 434 436 436
Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra	432 433 434
Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance	432 433 434 436 436 438 438 440
 Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance 18-4 Beer's Law in Chemical Analysis 	432 433 434 436 436 438 438 440
 Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance 18-4 Beer's Law in Chemical Analysis 18-5 Spectrophotometric Titrations 18-6 What Happens When a Molecule Absorbs Light? 	432 433 434 436 438 438 440 443 444
 Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance 18-4 Beer's Law in Chemical Analysis 18-5 Spectrophotometric Titrations 18-6 What Happens When a Molecule Absorbs Light? BOX 18-2 Fluorescence All Around Us 	432 433 434 436 438 438
 Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance 18-4 Beer's Law in Chemical Analysis 18-5 Spectrophotometric Titrations 18-6 What Happens When a Molecule Absorbs Light? 	432 433 434 436 438 438 440 443 444
 Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance 18-4 Beer's Law in Chemical Analysis 18-5 Spectrophotometric Titrations 18-6 What Happens When a Molecule Absorbs Light? BOX 18-2 Fluorescence All Around Us 18-7 Luminescence BOX 18-3 Rayleigh and Raman Scattering 	432 433 434 436 438 438 440 443 444 447
 Spectrophotometry The Ozone Hole 18-1 Properties of Light 18-2 Absorption of Light BOX 18-1 Why Is There a Logarithmic Relation Between Transmittance and Concentration? DEMONSTRATION 18-1 Absorption Spectra 18-3 Measuring Absorbance 18-4 Beer's Law in Chemical Analysis 18-5 Spectrophotometric Titrations 18-6 What Happens When a Molecule Absorbs Light? BOX 18-2 Fluorescence All Around Us 18-7 Luminescence 	432 433 434 436 438 438 440 443 444 447 448

Applications of Spectrophotometry **461**

Fluores	cence Resonance Energy Transfer Biosensor	461
19-1	Analysis of a Mixture	461
19-2	Measuring an Equilibrium Constant	466
19-3	The Method of Continuous Variation	470
19-4	Flow Injection Analysis and Sequential	
	Injection	471

19-5	Immunoassays	475
19-6	Sensors Based on Luminescence Quenching	477
BOX 19	-1 Converting Light into Electricity	478
BOX 19	-2) Upconversion	482
20 S	pectrophotometers	491
Cavity F	Ring-Down Spectroscopy	491
20-1	Lamps and Lasers: Sources of Light	492
BOX 20	-1 Blackbody Radiation and the	
	Greenhouse Effect	494
20-2	Monochromators	496
20-3	Detectors	501
BOX 20	-2 The Most Important Photoreceptor	502
	-3 Nondispersive Photoacoustic Infrared	
	Measurement of CO_2 on Mauna Loa	507
20-4	Optical Sensors	508
20-5	Fourier Transform Infrared Spectroscopy	514
	Dealing with Noise	519

21 Atomic Spectroscopy

An Anth	ropology Puzzle	529
21-1	An Overview	530
BOX 21	1 Mercury Analysis by Cold Vapor	
	Atomic Fluorescence	532
21-2	Atomization: Flames, Furnaces, and Plasmas	532
BOX 21	2 Measuring Sodium with a Bunsen	
	Burner Photometer	534
21-3	How Temperature Affects Atomic Spectroscopy	539
21-4	Instrumentation	540
21-5	Interference	544
21-6	Sampling by Laser Ablation	546
21-7	Inductively Coupled Plasma-Mass	
	Spectrometry	547
BOX 21	3 Atomic Emission Spectroscopy on Mars	548
21-8	X-ray Fluorescence	550
22 M	lass Spectrometry	559
		559
Droplet	Electrospray	
Droplet 22-1		559
Droplet 22-1 BOX 22	Electrospray What Is Mass Spectrometry? D Molecular Mass and Nominal Mass	559 559 561
Droplet 22-1 BOX 22	Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated	559 559 561
Droplet 22-1 BOX 22 BOX 22	Electrospray What Is Mass Spectrometry? D Molecular Mass and Nominal Mass	559 559 561
Droplet 22-1 BOX 22 BOX 22 22-2	 Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! 	559 559 561 561
Droplet 22-1 BOX 22 BOX 22 22-2	 Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! Isotope Ratio Mass Spectrometry and 	559 559 561 561
Droplet 22-1 BOX 22 BOX 22 22-2 BOX 22	 Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! 	559 559 561 561 564
Droplet 22-1 BOX 22 BOX 22 22-2 BOX 22 22-3	 Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! Isotope Ratio Mass Spectrometry and Dinosaur Body Temperature 	559 559 561 561 564 566
Droplet 22-1 BOX 22 BOX 22 22-2 BOX 22 22-3	 Electrospray What Is Mass Spectrometry? 1 Molecular Mass and Nominal Mass 2 How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! 3 Isotope Ratio Mass Spectrometry and Dinosaur Body Temperature Types of Mass Spectrometers 	559 559 561 561 564 566
Droplet 22-1 BOX 22 BOX 22 22-2 BOX 22 22-3 22-3 22-4	 Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! Isotope Ratio Mass Spectrometry and Dinosaur Body Temperature Types of Mass Spectrometers Chromatography–Mass Spectrometry 	559 559 561 561 564 566 571
Droplet 22-1 BOX 22 BOX 22 22-2 BOX 22 22-3 22-3 22-4	 Electrospray What Is Mass Spectrometry? Molecular Mass and Nominal Mass How Ions of Different Masses Are Separated by a Magnetic Field Oh, Mass Spectrum, Speak to Me! Isotope Ratio Mass Spectrometry and Dinosaur Body Temperature Types of Mass Spectrometers Chromatography–Mass Spectrometry Interfaces 	559 559 561 561 564 566 571

BOX 22-5 Making Elephants Fly (Mechanisms of	
Protein Electrospray)	588
22-6 Open-Air Sampling for Mass Spectrometry	592
22-7 Ion Mobility Spectrometry	594

23 Introduction to Analytical Separations

Milk Does a Baby Good 23-1 Solvent Extraction **DEMONSTRATION 23-1** Extraction with Dithizone BOX 23-1 Crown Ethers and Phase Transfer Agents 23-2 What Is Chromatography? 23-3 A Plumber's View of Chromatography 23-4 Efficiency of Separation 23-5 Why Bands Spread BOX 23-2 Microscopic Description of Chromatography

24 (Gas (Chromato	grap	hy	633
------	-------	----------	------	----	-----

Doping	in Sports	633
24-1	The Separation Process in Gas	
	Chromatography	634
BOX 24	D Chiral Phases for Separation Optical	
	Isomers	638
24-2	Sample Injection	645
24-3	Detectors	648
BOX 24	2 Chromatography Column on a Chip	652
24-4	Sample Preparation	655
24-5	Method Development in Gas	
	Chromatography	657
BOX 24	-3 Two-Dimensional Gas	
	Chromatography	660

25 High-Performance Liquid Chromatography

Paleothermometry: How to Measure Historical		
Ocean Temperatures		
25-1 The Chromatographic Process	668	
BOX 25-1 One-Million-Plate Colloidal Crystal		
Columns Operating by Slip Flow	676	
BOX 25-2 Structure of the Solvent–Bonded		
Phase Interface	677	
BOX 25-3 "Green" Technology: Supercritical Fluid		
Chromatography	680	
25-2 Injection and Detection in HPLC	685	
25-3 Method Development for Reversed-Phase		
Separations	691	
25-4 Gradient Separations	699	
25-5 Do it with a Computer	701	
BOX 25-4 Choosing Gradient Conditions and		
Scaling Gradients	704	

Ionization

26 Chromatographic Methods and Capillary Electrophoresis

713

751

Answers to Problems

Index

DNA Pr	ofiling	713
26-1	Ion-Exchange Chromatography	714
26-2	Ion Chromatography	720
BOX 26	-1 Surfactants and Micelles	725
26-3	Molecular Exclusion Chromatography	725
26-4	Affinity Chromatography	727
BOX 26	-2 Molecular Imprinting	728
26-5	Hydrophobic Interaction Chromatography	728
26-6	Principles of Capillary Electrophoresis	729
26-7	Conducting Capillary Electrophoresis	735
26-8	Lab-on-a-Chip: DNA Profiling	743

27 Gravimetric and Combustion Analysis

	blogic Time Scale and Gravimetric Analysis	751
27-1	An Example of Gravimetric Analysis	752
27-2	Precipitation	754
DEMON	STRATION 27-1 Colloids, Dialysis, and	
	Microdialysis	755
BOX 27-	1 van der Waals Attraction	758
27-3	Examples of Gravimetric Calculations	760
27-4	Combustion Analysis	763

28 Sample Preparation 771 Cocaine Use? Ask the River 771 28-1 Statistics of Sampling 773 28-2 Dissolving Samples for Analysis 777 28-3 Sample Preparation Techniques 782 **Notes and References** NR1 Glossary GL1 **Appendixes** AP1 A. Logarithms and Exponents and Graphs of Straight Lines AP1 B. Propagation of Uncertainty AP3 C. Analysis of Variance and Efficiency in AP10 Experimental Design D. Oxidation Numbers and Balancing Redox Equations AP19 E. Normality AP22 F. Solubility Products AP23 G. Acid Dissociation Constants AP25 H. Standard Reduction Potentials AP34 I. Formation Constants AP42 J. Logarithm of the Formation Constant for the Reaction $M(aq) + L(aq) \Longrightarrow ML(aq)$ AP45 K. Analytical Standards AP46 L. DNA and RNA AP48 **Solutions to Exercises S1**

AN1

11

EXPERIMENTS

Experiments are found at the website **www.whfreeman.com/qca/**

- 0. Green Analytical Chemistry
- 1. Calibration of Volumetric Glassware
- 2. Gravimetric Determination of Calcium as $CaC_2O_4 \cdot H_2O$
- 3. Gravimetric Determination of Iron as Fe₂O₃
- 4. Penny Statistics
- 5. Statistical Evaluation of Acid-Base Indicators
- 6. Preparing Standard Acid and Base
- 7. Using a pH Electrode for an Acid-Base Titration
- 8. Analysis of a Mixture of Carbonate and Bicarbonate
- 9. Analysis of an Acid-Base Titration Curve: The Gran Plot
- 10. Fitting a Titration Curve with Excel Solver
- 11. Kjeldahl Nitrogen Analysis
- 12. EDTA Titration of Ca^{2+} and Mg^{2+} in Natural Waters
- 13. Synthesis and Analysis of Ammonium Decavanadate
- 14. Iodimetric Titration of Vitamin C
- 15. Preparation and Iodometric Analysis of High-Temperature Superconductor
- 16. Potentiometric Halide Titration with Ag⁺
- 17. Electrogravimetric Analysis of Copper
- 18. Polarographic Measurement of an Equilibrium Constant
- 19. Coulometric Titration of Cyclohexene with Bromine
- 20. Spectrophotometric Determination of Iron in Vitamin Tablets

- 21. Microscale Spectrophotometric Measurement of Iron in Foods by Standard Addition
- 22. Spectrophotometric Measurement of an Equilibrium Constant
- 23. Spectrophotometric Analysis of a Mixture: Caffeine and Benzoic Acid in a Soft Drink
- 24. Mn²⁺ Standardization by EDTA Titration
- 25. Measuring Manganese in Steel by Spectrophotometry with Standard Addition
- 26. Measuring Manganese in Steel by Atomic Absorption Using a Calibration Curve
- 27. Properties of an Ion-Exchange Resin
- 28. Analysis of Sulfur in Coal by Ion Chromatography
- 29. Measuring Carbon Monoxide in Automobile Exhaust by Gas Chromatography
- 30. Amino Acid Analysis by Capillary Electrophoresis
- 31. DNA Composition by High-Performance Liquid Chromatography
- 32. Analysis of Analgesic Tablets by High Performance Liquid Chromatography
- 33. Anion Content of Drinking Water by Capillary Electrophoresis
- 34. Green Chemistry: Liquid Carbon Dioxide Extraction of Lemon Peel Oil

SPREADSHEET TOPICS

2-10	Introduction to Microsoft Excel
2-11	Graphing with Microsoft Excel
Proble	m 3-8 Controlling the appearance of a graph
4-1	Average, standard deviation
4-1	Area under a Gaussian curve (Normdist)
Table 4	4-3 F-Distribution (Finv)
4-3	Finding Confidence Intervals
4-4	Paired t-Test
4-5	t-Test
4-7	Equation of a straight line (Slope and Intercept)
4-7	Equation of a straight line (LINEST)
4-9	Spreadsheet for least squares
4-9	Error bars on graphs
5-2	Square of the correlation coefficient, R^2
	(LINEST)
Proble	m 5-15 Using Trendline
7-5	Calculating precipitation titration curves
	with a spreadsheet

101 114

154

8-5	Goal Seek	174
8-5	Solver	176-177
8-5	Solver with circular reference	179
9-5	Excel's Goal Seek tool and naming of cells	206
Proble	m 10-9 Automatic iteration	230
11-10	Acid-base titration	254
12-4	EDTA titrations	273
Proble	m 12-20 Auxiliary complexing agents in	
	EDTA titrations	284
Proble	m 12-22 Complex formation	285
13-1	Using Excel Solver	290
13-2	Activity coefficients with the	
	Davies equation	291-293
13-3	Dependence of solubility on pH	296
13-4	Fitting nonlinear curves by least squares	301
13-4	Using Excel Solver for more than one unknown	302
19-1	Solving simultaneous equations by least	
	squares with Solver	463

19-1	Solving simultaneous equations by matrix inversion	465	Appendix C Multiple linear regression and experimental design (Linest)	AP15
19-2	Measuring equilibrium constants by least		Supplementary Topics at Website:	
	squares with Solver	467	Spreadsheet for Precipitation Titration of a Mixture	
20-6	Savitzky-Golay polynomial smoothing of nois	se 521	Microequilibrium Constants	
25-5	Computer simulation of a chromatogram	701	Spreadsheets for Redox Titration Curves	
Appe	ndix B Propagation of uncertainty	AP4	HPLC Chromatography Simulator	
Appendix C Analysis of variance (ANOVA) AP13		AP13–AP14	Fourier Transform of Infrared Spectrum with a Spreadshee	et

SPREADSHEETS AT WEBSITE

	Figure 4-15	Least Squares with LINEST
--	-------------	---------------------------

- Figure 4-16 Error Bar Graph
- Figure 5-5Standard Addition with Graph
- Figure 6-3 Complex Formation
- Figure 8-13 CaSO₄ Equilibria
- Problem 8-30 MgCl₂ Ion Pairing with Activity
- Figure 11-3a Titration of HA with NaOH Effect of pK_a
- Figure 11-3a Titration of HA with NaOH Effect of Concentration
- Figure 11-4 Nicotine Titration
- Figure 12-12 EDTA Titration
- Figure 13-1 Tartrate + Pyridinium + OH⁻
- Figure 13-3 $KH_2PO_4 + Na_2HPO_4$ with Activity

Figure 13-5	CaF ₂ with Activity			
Figure 13-6	Barium Oxalate			
Figure 13-11	Difference Plot for Glycine			
Figure 19-3	Analysis of Mixture			
	(More Points than Components)			
Figure 19-4	Solving Two Simultaneous Equations			
Figure 19-8	Neutral Red Protein Binding Least Squares			
Exercise 19-B Data for Analysis of Three-				
	Component Mixture			
Figure 25-36 Isocratic Chromatogram Simulator				
Supplement: G	radient Elution Chromatogram Simulator			
Supplement: F	TIR Interferogram			
Supplement: FTIR Interferogram Solution for Exercise				

CONNECTIONS: Maria Goeppert Mayer

[Emilio Segre Visual Archives/ Science Source.]

Maria Goeppert Mayer (1906–1972) was the second and, so far, last woman (after Marie Curie) to receive the Nobel Prize in Physics. She shared half of the 1963 prize with Hans Jensen for their independent theories of atomic nuclear shell structure published in 1949.

What does she have to do with this book? The back cover shows evidence that the body temperature of certain dinosaurs was similar to that of warm blooded animals. In 1947, she and Jacob Bigeleisen published a paper, "Calculation of Equilibrium Constants for Isotopic Exchange Reactions."* This paper was one of the foundational studies for paleothermometry—the use of isotopes

to deduce the temperature at which objects such as dinosaur teeth were formed. From mathematical physics to analytical chemistry to dinosaurs, there is a thread of connection.

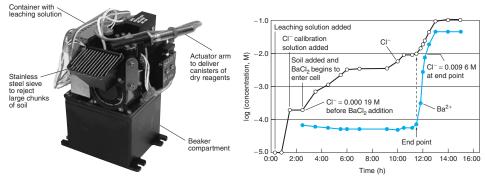
Maria was born to a sixth-generation university professor in Göttingen, Germany.[†] From early childhood, she knew that she would acquire a university education, but there were few avenues for girls' education. She attended a small, private girls' school, which closed before her studies were complete. Against all advice, she took and passed the University of Göttingen entrance examination to be admitted in 1924. Her first exposure to quantum mechanics by Max Born hooked her. She received a Ph.D. in 1930, with three Nobel Prize winners on her committee.

Maria married Joe Mayer, a Caltech- and Berkeley-educated physical chemist who was a postdoctoral boarder in the Goeppert household. They moved to the U.S., where Joe began a distinguished career at Johns Hopkins University, Columbia University, and the University of Chicago. In 1940 they coauthored *Statistical Mechanics*, a textbook used for more than 40 years. Maria was regarded as at least equally gifted, but she was not offered a paid position at any university despite teaching courses, advising graduate students, serving on committees, and writing graduate examinations—all as a volunteer! Her first paid appointment as a professor at the University of California at San Diego came in 1960, four years after her election to the National Academy of Sciences.

^{*}J. Bigeleisen and M. G. Mayer, J. Chem. Phys. 1947, 15, 261.

[†]S. B. McGrayne, Nobel Prize Women in Science (Washington DC: Joseph Henry Press, 1998).

PREFACE


Goals of This Book

My goals are to provide a sound physical understanding of the principles of analytical chemistry and to show how these principles are applied in chemistry and related disciplines especially in life sciences and environmental science. I have attempted to present the subject in a rigorous, readable, and interesting manner, lucid enough for nonchemistry majors, but containing the depth required by advanced undergraduates. This book grew out of an introductory analytical chemistry course that I taught mainly for nonmajors at the University of California at Davis and from a course for third-year chemistry students at Franklin and Marshall College in Lancaster, Pennsylvania.

What's New?

Beginning with dinosaur body temperature on the back cover of this book, analytical chemistry addresses interesting questions in the wider world. The facing page draws a connection between the back cover and underlying human achievement in physics that enables us to deduce body temperature from the isotopic composition of teeth. The story of Maria Goeppert Mayer is a lesson for us all in how women in science were so poorly treated not so long ago.

In this edition, the introduction to titrations has been consolidated in Chapter 7. Acidbase, EDTA, redox, and spectrophotometric titrations are still treated in other chapters. The power of the spreadsheet is unleashed in Chapter 8 to reach numerical solutions to equilibrium problems and in Chapter 19 to compute equilibrium constants from spectrophotometric data. Atomic spectroscopy Chapter 21 has a new section on X-ray fluorescence as a routine analytical tool. Mass spectrometry Chapter 22 has been expanded to increase the level of detail and to help keep up with new developments. Chapter 27 has an extraordinary sequence of micrographs showing the onset of crystallization of a precipitate. Three new methods in sample preparation were added to Chapter 28. Appendix B takes a deeper look at propagation of uncertainty and Appendix C treats analysis of variance.

BOX 15-3 Measuring sulfate on Mars by titration with barium [Mars Lander: NASA/JPL-Caltech/ University of Arizona/Max Planck Institute.]

FIGURE FROM PROBLEM 7-21 Barium sulfate precipitation titration from Phoenix Mars Lander [Data courtesy S. Kounaves, Tufts University.]

For the first time since I began work on this book in 1978, I have taken on a contributing author for part of this revision. Professor Chuck Lucy of the University of Alberta shares his expertise and teaching experience with us in Chapters 23–26 on chromatography and capillary electrophoresis. He improved the discussion of the efficiency of separation and mechanisms of band spreading. Emphasis is placed on types of interactions between solutes and the stationary phase. Types of solvent polarity are distinguished in liquid chromatography. Examples are given for the selection of stationary phase and pH for liquid chromatography separations. Electrophoresis has more emphasis on the effects of ion size and pH on mobility. Chuck contributes the views of a specialist in separation science to these chapters.

New boxed applications include a home pregnancy test (Chapter 0 opener), observing the addition of one base to DNA with a quartz crystal microbalance (Chapter 2 opener), medical implications of false positive results (Box 5-1), a titration on Mars (Chapter 7 opener),

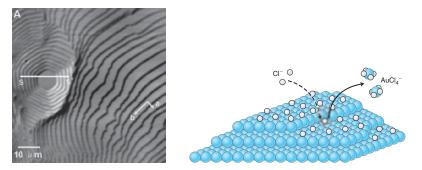
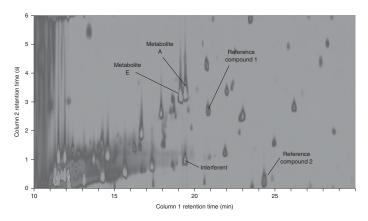



FIGURE FROM BOX 17-1 Anodic dissolution of gold at atomic steps [R. Wen, A. Lahiri, M. Azhagurajan, S. Kobayashi, K. Itaya, "A New in situ Optical Microscope with Single Atomic Layer Resolution for Observation of Electrochemical Dissolution of Au (111)," *J Am Chem Soc* 2010, *132*, 13657, Figure 2. Reprinted with permission © 2010, American Chemical Society.]

microequilibrium constants (Box 10-3), acid-base titration of RNA to provide evidence for the mechanism of RNA catalysis (Chapter 11 opener), the hydrogen-oxygen fuel cell and the *Apollo* 13 accident (Box 14-2), the lead-acid battery (Box 14-3), high-throughput DNA sequencing by counting protons (Chapter 15 opener), how perchlorate was discovered on Mars (Box 15-3), ion-selective electrode with a conductive polymer for a sandwich immunoassay (Box 15-4), metal reaction at atomic steps (Box 17-1), an aptamer biosensor for clinical use (Box 17-5), Bunsen burner flame photometer (Box 21-2), atomic emission spectroscopy on Mars (Box 21-3), making elephants fly (mechanism of protein electrospray, Box 22-5), chromatographic analysis of breast milk (Chapter 23 opener), doping in sports (Chapter 24 opener), two-dimensional gas chromatography (Box 24-3), million-plate separation by slip flow chromatography (Box 25-1), forensic DNA profiling (Chapter 26 opener and Section 26-8), and measuring van der Waals attraction (Box 27-1). New Color Plates illustrate the effect of ionic strength on ion dissociation (Color Plate 4), the mechanism of chromatography by partitioning of analyte between phases (Color Plate 30), and separation of dyes by solid-phase extraction (Color Plate 36).

CHAPTER 24 OPENING IMAGE Two-dimensional gas chromatography– combustion isotope ratio mass spectrometry to detect doping in athletes [H. J. Tobias, Y. Zhang, R. J. Auchus, J. T. Brenna, "Detection of Synthetic Testosterone Use by Novel Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry," *Anal Chem* **2011**, *83*, 7158, Figure 4A. Reprinted with permission © 2011, American Chemical Society.]

Pedagogical changes in this edition include more discussion of serial dilution to prepare standards in Chapters 2, 3, and 18, distinction between standard uncertainty and standard deviation in statistics, more discussion of hypothesis testing in statistics, employing the F test before the t test for comparison of means, using a graphical treatment for internal standards, emphasis on electron flow toward the more positive electrode in electrochemical cells, using nanoscale observations to probe phenomena such as van der Waals forces and

the amorphous structure of glass in a pH electrode, polynomial smoothing of noisy data, expanded discussion of the time-offlight mass spectrometer and ion mobility separations, enhanced discussion of intermolecular forces in chromatography, enhanced discussion of method development in liquid chromatography, use of a free, online liquid chromatography simulator, introduction of two literature search questions in chromatography, and taking more advantage of the power of Excel for numerical analysis. Box 3-3 explains how I have chosen to handle atomic weight intervals in the latest periodic table of the elements.

Features

Topics are introduced and illustrated with concrete, interesting examples. In addition to their pedagogic value, Chapter Openers, Boxes, Demonstrations, and Color Plates are intended to help lighten the load of a very dense subject. **Chapter Openers** show the relevance of analytical chemistry to the real world and to other disciplines of science. I can't come to your classroom to present **Chemical Demonstrations**, but I can tell you about some of my favorites and show how they look with the **Color Plates** located near the center of the book. **Boxes** discuss interesting topics related to what you are studying or amplify points in the text.

Problem Solving

Nobody can do your learning for you. The two most important ways to master this course are to work problems and to gain experience in the laboratory. **Worked Examples** are a principal pedagogic tool to teach problem solving and to illustrate how to apply what you have just read. Each worked example ends with a **Test Yourself** question that you are encouraged to answer to apply what

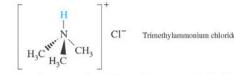
you learned in the example. There are Exercises and Problems at the end of each chapter. **Exercises** are the minimum set of problems that apply most major concepts of each chapter. Please struggle mightily with an Exercise before consulting the solution at the back of the book. **Problems** at the end of the chapter cover the entire content of the book. **Short Answers** are at the back of the book and complete solutions appear in the **Solutions Manual**.

Spreadsheets are indispensable for science and engineering and uses far beyond this course. You can cover this book without using spreadsheets, but you will never regret taking the time to learn to use them. A few of the powerful features of Microsoft Excel are described as they are needed, including graphing in Chapters 2 and 4, statistical functions and regression in Chapter 4, solving equations with Goal Seek, Solver, and circular definitions in Chapters 7, 8, 13, and 19, and some matrix operations in Chapter 19. The text teaches you how to construct spreadsheets to simulate many types of titrations, to solve chemical equilibrium problems, and to simulate chromatographic separations.

Other Features of This Book

Terms to Understand Essential vocabulary, highlighted in **bold** in the text, is collected at the end of the chapter. Other unfamiliar or new terms are *italic* in the text.

Glossary Bold vocabulary terms and many of the italic terms are defined in the glossary.


Appendixes Tables of solubility products, acid dissociation constants, redox potentials, and formation constants appear at the back of the book. You will also find discussions of logarithms and exponents, propagation of error, analysis of variance, balancing redox equations, normality, analytical standards, and a little bit about DNA.

Notes and References Citations in the chapters appear at the end of the book.

Inside Cover Here is your trusty periodic table, as well as tables of physical constants and other information.

EXAMPLE A Weak-Acid Problem

Find the pH of 0.050 M trimethylammonium chloride.

Solution We assume that ammonium halide salts are completely dissociated to give $(CH_3)_3NH^+$ and Cl^- .* We then recognize that trimethylammonium ion is a weak acid, being the conjugate acid of trimethylamine, $(CH_3)_3N$, a weak base. Cl^- has no basic on

CHAPTER 9 EXAMPLE PAGE 193

	Α	В	С	D	E	F
1	Thallium	azide equilibri	a			
2 1. Estimate values of pC = $-\log[C]$ for N ₃ ⁻ and OH ⁻ in cells B6 and B7						
3	3 2. Use Solver to adjust the values of pC to minimize the sum in cell F8					
4						
5	Species	pC	C (= 10^-pC)		Mass and charge balances	bi
6	N3 ⁻	2	0.01	C6 = 10^-B6	$b_1 = 0 = [TI^+] - [N_3^-] - [HN_3] =$	1.19E-02
7	OH-	4	0.0001	C7 = 10^-B7	$b_2 = 0 = [TI^+] + [H^+] - [N_3^-] - [OH^-] =$	1.18E-02
8	TI+		0.021877616	C8 = D12/C6	$\Sigma b_i^2 =$	2.80E-04
9	HN_3		4.46684E-08	C9 = D13*C6/C7	F6 = C8-C6-C9	
10	H+		1E-10	C10 = D14/C7	F7 = C8+C10-C6-C7	
11					F8 = F6^2+F7^2	
12	pK _{sp} =	3.66	K _{sp} =	0.000218776	= 10^-B12	
13	pK _b =	9.35	K _b =	4.46684E-10	= 10^-B13	
14	pK _w =	14.00	K _W =	1E-14	= 10^-B14	

FIGURE 8-9 Thallium azide solubility spreadsheet without activity coefficients. Initial estimates $pN_3^- = 2$ and $pOH^- = 4$ appear in cells B6 and B7. From these two numbers, the spreadsheet computes concentrations in cells C6:C10. Solver then varies pN_3^- and pOH^- in cells B6 and B7 until the charge and mass balances in cell F8 are satisfied.

Media and Supplements

The *Solutions Manual for Quantitative Chemical Analysis* contains complete solutions to all problems.

New Clicker Questions allow instructors to integrate active learning in the classroom and to assess students' understanding of key concepts during lectures. Available in Microsoft Word and PowerPoint (PPT).

New Lecture PowerPoints have been developed to minimize preparation time for new users of the book. These files offer suggested lectures including key illustrations and summaries that instructors can adapt to their teaching styles.

New Test Bank offers questions in editable Microsoft Word format.

Premium WebAssign with e-Book www.webassign.com features time-tested, secure, online environment already used by millions of students worldwide. Featuring algorithmic problem generation, students receive homework problems containing unique values for computation, encouraging them to work out the problems on their own. Additionally, there is complete access to the e-Book, from a live table of contents.

Sapling Learning with e-Book www.sapling.com provides highly effective interactive homework and instruction that improve student learning outcomes for the problem-solving disciplines. Sapling Learning offers an enjoyable teaching and effective learning experience that is distinctive in three important ways: (1) ease of use: Sapling Learning's easy-to-use interface keeps students engaged in problem-solving, not struggling with the software; (2) targeted instructional content: Sapling Learning increases student engagement and comprehension by delivering immediate feedback and targeted instructional content; (3) unsurpassed service and support: Sapling Learning makes teaching more enjoyable by providing a dedicated Masters- and Ph.D.-level colleague to service instructors' unique needs throughout the course, including content customization.

The **student website** www.whfreeman.com/qca has **directions for experiments** which may be reproduced for your use. You will also find **lists of experiments** from the *Journal of Chemical Education*. **Supplementary topics** at the website include spreadsheets for precipitation and redox titrations, discussion of microequilibrium constants, a spreadsheet simulation of gradient liquid chromatography, and Fourier transformation of an interferogram into an infrared spectrum. You will also find 24 **selected Excel spreadsheets** from the textbook ready to use at the student website.

The **instructors' website**, www.whfreeman.com/qca, has all **artwork** and **tables** from the book in preformatted PowerPoint slides.

The People

My wife Sally works on every aspect of this book and the Solutions Manual. She contributes mightily to whatever clarity and accuracy we have achieved.

Solutions to problems and exercises were meticulously checked by Heather Audesirk, a graduate student at Caltech, and by Julia Lee, a senior at Harvey Mudd College.

A book of this size and complexity is the work of many people. Brittany Murphy, Anna Bristow, and Lauren Schultz provided editorial and market guidance. Jennifer Carey was the Project Editor responsible for making sure that all pieces of this book fell into the right place. Marjorie Anderson attended to the challenging details of copyediting. Photo research and permissions were ably handled by Cecilia Varas and Richard Fox. Matthew McAdams, Janice Donnola, and Tracey Kuehn coordinated the illustration program. Anna Skiba-Crafts was the courageous proofreader.

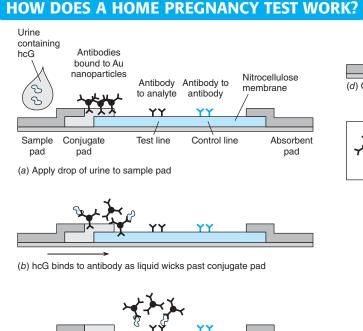
In Closing

This book is dedicated to the students who use it, who occasionally smile when they read it, who gain new insight, and who feel satisfaction after struggling to solve a problem. I have been successful if this book helps you develop critical, independent reasoning that you can apply to new problems in or out of chemistry. I truly relish your comments, criticisms, suggestions, and corrections. Please address correspondence to me at the Chemistry Division (Mail Stop 6303), Research Department, Michelson Laboratory, China Lake, CA 93555.

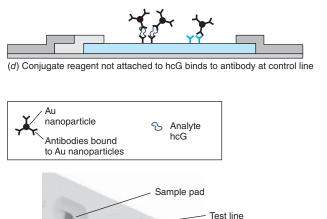
Dan Harris March 2015

WebAssign Premium

Acknowledgements


I am indebted to many people who provided new information for this edition, asked probing questions, and made good suggestions. Pete Palmer of San Francisco State University graciously shared his instructional material for X-ray fluorescence and provided a detailed critique of my draft, as well as suggestions for mass spectrometry. Karyn Usher of Metropolitan State University, Saint Paul, Minnesota, photographed her solid-phase extraction experiment that appears in Color Plate 36. Martin Mirenda of the Universidad de Buenos Aires provided Color Plate 4 showing the instructive effect of ionic strength on the color of bromocresol green. Jim De Yoreo and Mike Nielsen of Battelle Pacific Northwest National Laboratory provided the exquisite time-lapse calcium carbonate nucleation transmission electron micrographs in Figure 27-2.

Barbara Belmont of California State University, Dominguez Hills asked a seemingly simple question in 2011 about the propagation of uncertainty that required the knowledge of my statistician colleague, Dr. Ding Huang, to answer. This question led to the expanded Appendix B. D. Brynn Hibbert of the University of New South Wales, Australia, was also a resource for statistics. Jürgen Gross of Heidelberg University and David Sparkman of the University of the Pacific in California were resources for mass spectrometry. Dale Lecaptain of Central Michigan University requested more emphasis on serial dilutions, which has been added. Brian K. Niece of Assumption College, Worcester, Massachusetts, corrected my procedure for using hydroxynaphthol blue indicator for EDTA titrations. Micha Enevoldsen of Frederiksberg, Denmark, taught me that Kjeldahl was a Danish chemist, not a Dutch chemist. He also taught me that Kjeldahl was one of the "three great pH's," who also include S. P. L. Sørensen and K. U. Linderstrøm-Lang. Chan Kang of Chonbuk National University, Korea, pointed out that I had been using the letter n to mean more than one thing in electrochemistry, which I have attempted to correct in this edition. Alena Kubatova of the University of North Dakota provided some of her teaching materials for mass spectrometry. Other helpful corrections and suggestions came from Richard Gregor (Rollins College, Florida), Franco Basile (University of Wyoming), Jeffrey Smith (Carleton University, Ottawa), Kris Varazo (Francis Marion University, Florence, South Carolina), Doo Soo Chung (Seoul National University), Ron Cooke (California State University, Chico), David D. Weiss (Kansas University), Steven Brown (University of Delaware), Athula Attygalle (Stevens Institute of Technology, Hoboken, New Jersey), and Peter Liddel (Glass Expansion, West Melbourne, Australia).


People who reviewed the 8th edition of Quantitative Chemical Analysis and parts of the manuscript for the 9th edition include Truis Smith-Palmer (St. Francis Xavier University), William Lammela (Nazareth College), Nelly Mateeva (Florida A&M University), Alena Kubatova (University of North Dakota), Barry Ryan (Emory University), Neil Jespersen (St. John's University), David Kreller (Georgia Southern University), Darcey Wayment (Nicholls State University), Karla McCain (Austin College), Grant Wangila (University of Arkansas), James Rybarczyk (Ball State University), Frederick Northrup (Northwestern University), Mark Even (Kent State University), Jill Robinson (Indiana University), Pete Palmer (San Francisco State University), Cindy Burkhardt (Radford University), Nathanael Fackler (Nebraska Weslyan University), Stuart Chalk (University of North Florida), Reynaldo Barreto (Purdue University North Central), Susan Varnum (Temple University), Wendy Cory (College of Charleston), Eric D. Dodds (University of Nebraska, Lincoln), Troy D. Wood (University of Buffalo), Roy Cohen (Xavier University), Christopher Easley (Auburn University), Leslie Sombers (North Carolina State University), Victor Hugo Vilchiz (Virginia State University), Yehia Mechref (Texas Tech University), Lenuta Cires Gonzales (California State University, San Marcos), Wendell Griffith (University of Toledo), Anahita Izadyar (Arkansas State University), Leslie Hiatt (Austin Peay State University), David Carter (Angelo State University), Andre Venter (Western Michigan University), Rosemarie Chinni (Alvernia University), Mary Sohn (Florida Technical College), Christopher Babayco (Columbia College), Razi Hassan (Alabama A&M University), Chris Milojevich (University of Tampa), Steven Brown (University of Delaware), Anne Falke (Worcester State University), Julio Alvarez (Virginia Commonwealth University), Keith Kuwata (Macalaster College), Levi Mielke (University of Indianapolis), Simon Mwongela (Georgia Gwinnett College), Omowunmi Sadik (State University of New York at Binghamton), Jingdong Mao (Old Dominion University), Jani Ingram (Northern Arizona University), Matthew Mongelli (Kean University), Vince Cammarata (Auburn University), Ed Segstro (University of Winnipeg), Tiffany Mathews (Villanova University), Andrea Matti (Wayne State University), Rebecca Barlag (Ohio University), Barbara Munk (Wayne State University), John Berry (Florida International University), Patricia Cleary (University of Wisconsin, Eau Claire), and Sandra Barnes (Alcorn State University).

this page left intentionally blank

The Analytical Process

(c) Another part of hcG binds to antibody at test line

Control line

A common home pregnancy test detects a hormone called hcG in urine. This hormone begins

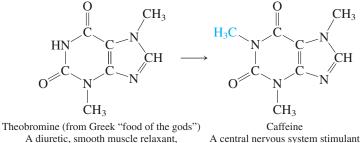
(e) Home pregnancy test [Rob Byron/Shutterstock.]

An *antibody* is a protein secreted by white blood cells to bind to a foreign molecule called an *antigen*. Antibody-antigen binding is the first step in the immune response that eventually removes a foreign substance or an invading cell from your body. Antibodies to human proteins such as hcG can be cultivated in animals.

to be secreted shortly after conception.

In the *lateral flow home pregnancy immunoassay* shown in the diagram, urine is applied to the sample pad at the left end of a horizontal test strip made of nitrocellulose that serves as a wick. Liquid flows from left to right by capillary action. Liquid first encounters detection reagent on the conjugate pad. The reagent is called a conjugate because it consists of hcG antibody attached to red-colored gold nanoparticles. The antibody binds to one site on hcG.

As liquid flows to the right, hcG bound to the conjugate is trapped at the test line, which contains an antibody that binds to another site on hcG. Gold nanoparticles trapped with hcG at the test line create a visible red line. As liquid continues to the right, it encounters the control line with antibodies that bind to the conjugate reagent. A second red line forms at the control line. At the far right is an absorbent pad that soaks up liquid containing anything that was not retained at the test or control lines.


In a positive pregnancy test, both lines turn red. The test is negative if only the control line turns red. If the control line fails to turn red, the test is invalid.

Bold terms should be learned. *Italicized* terms are less important. A glossary of terms is found at the back of the book.

Quantitative analysis: How much is present? Qualitative analysis: What is present? Quantitative chemical analysis is the measurement of *how much* of a chemical substance is present. The purpose of quantitative analysis is usually to answer a question such as "Does this mineral contain enough copper to be an economical source of copper?" The home pregnancy test above is a **qualitative chemical analysis**, which looks for the presence of a hormone that is produced during pregnancy. This test answers the even more important question, "Am I pregnant?" Qualitative analysis tells us *what* is present and quantitative analysis tells us *how much* is present. In quantitative analysis, the chemical measurement is only part of a process that includes asking a meaningful question, collecting a relevant sample, treating the sample so that the chemical of interest can be measured, making the measurement, interpreting the results, and providing a report.

0-1 The Analytical Chemist's Job

My favorite chocolate bar,¹ jammed with 33% fat and 47% sugar, propels me over mountains in California's Sierra Nevada. In addition to its high energy content, chocolate packs an extra punch with the stimulant caffeine and its biochemical precursor, theobromine.

A diuretic, smooth nuscle relaxant, cardiac stimulant, and vasodilator

Too much caffeine is harmful for many people, and some unlucky individuals cannot tolerate even small amounts. How much caffeine is in a chocolate bar? How does that amount compare with the quantity in coffee or soft drinks? At Bates College in Maine, Professor Tom Wenzel teaches his students chemical problem solving through questions such as these.²

But, how *do* you measure the caffeine content of a chocolate bar? Two students, Denby and Scott, began their quest with a search of *Chemical Abstracts* for analytical methods. Looking for the key words "caffeine" and "chocolate," they uncovered numerous articles in chemistry journals. Two reports, both entitled "High-Pressure Liquid Chromatographic Determination of Theobromine and Caffeine in Cocoa and Chocolate Products,"³ described a procedure suitable for the equipment in their laboratory.⁴

Sampling

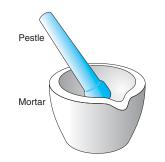
The first step in any chemical analysis is procuring a representative sample to measure a process called **sampling.** Is all chocolate the same? Of course not. Denby and Scott bought one chocolate bar and analyzed pieces of it. If you wanted to make broad statements about "caffeine in chocolate," you would need to analyze a variety of chocolates. You would also need to measure multiple samples of each type to determine the range of caffeine in each kind of chocolate.

A pure chocolate bar is fairly **homogeneous**, which means that its composition is the same everywhere. It might be safe to assume that a piece from one end has the same caffeine content as a piece from the other end. Chocolate with a macadamia nut in the middle is an example of a **heterogeneous** material—one whose composition differs from place to place. The nut is different from the chocolate. To sample a heterogeneous material, you need to use a strategy different from that used to sample a homogeneous material. You would need to know the average mass of chocolate and the average mass of nuts in many candies. You would need to know the average caffeine content of the chocolate and of the macadamia nut (if it has any caffeine). Only then could you make a statement about the average caffeine content of macadamia chocolate.

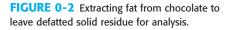
Sample Preparation

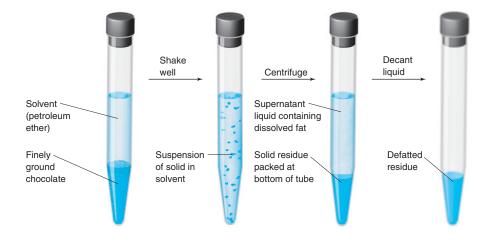
The first step in the procedure calls for weighing out some chocolate and extracting fat from it by dissolving the fat in a hydrocarbon solvent. Fat needs to be removed because it would interfere with chromatography later in the analysis. Unfortunately, if you just shake a chunk of chocolate with solvent, extraction is not very effective because the solvent has no access to the inside of the chocolate. So, our resourceful students sliced the chocolate into small bits and placed the pieces into a mortar and pestle (Figure 0-1), thinking they would grind the solid into small particles.

Notes and references appear after the last chapter of the book.


Chocolate is great to eat, but not so easy to analyze. [Dima Sobko/Shutterstock.]

A **diuretic** makes you urinate.


A vasodilator enlarges blood vessels.

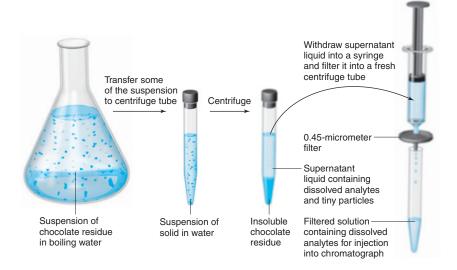

Chemical Abstracts is the most comprehensive source for locating articles published in chemistry journals. *SciFinder* is software that accesses *Chemical Abstracts*.

Homogeneous: same throughout Heterogeneous: differs from region to region

FIGURE 0-1 Ceramic mortar and pestle used to grind solids into fine powders.

Imagine trying to grind chocolate! The solid is too soft to grind. So Denby and Scott froze the mortar and pestle with its load of sliced chocolate. Once the chocolate was cold, it was brittle enough to grind. Small pieces were placed in a preweighed 15-milliliter (mL) centrifuge tube, and their mass was noted.

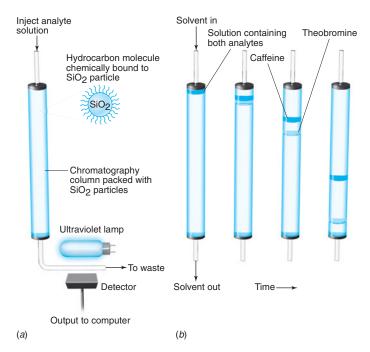
Figure 0-2 shows the next part of the procedure, which is to remove fat that would interfere with subsequent chromatography. A 10-mL portion of the solvent, petroleum ether, was added to the tube, and the top was capped with a stopper. The tube was shaken vigorously to dissolve fat from the solid chocolate into the solvent. Caffeine and theobromine are insoluble in this solvent. The mixture of liquid and fine particles was then spun in a centrifuge to pack the chocolate at the bottom of the tube. The clear liquid, containing dissolved fat, could now be **decanted** (poured off) and discarded. Extraction with fresh portions of solvent was repeated twice more to remove more fat from the chocolate. Residual solvent in the chocolate was then removed by heating the centrifuge tube in a beaker of boiling water. The mass of chocolate residue could be calculated by weighing the tube plus its content of defatted chocolate residue and subtracting the known mass of the empty tube.


Substances being measured—caffeine and theobromine in this case—are called **analytes.** The next step in the sample preparation procedure was to make a **quantitative transfer** (a complete transfer) of the fat-free chocolate residue to an Erlenmeyer flask and to dissolve the analytes in water for the chemical analysis. If any residue were not transferred from the tube to the flask, then the final analysis would be in error because not all of the analyte would be present. To perform the quantitative transfer, Denby and Scott added a few milliliters of pure water to the centrifuge tube and used stirring and heating to dissolve or suspend as much of the chocolate as possible. Then they poured the **slurry** (a suspension of solid in a liquid) into a 50-mL flask. They repeated the procedure several times with fresh portions of water to ensure that every bit of chocolate was transferred from the centrifuge tube to the flask.

To complete the dissolution of analytes, Denby and Scott added water to bring the volume up to about 30 mL. They heated the flask in a boiling water bath to extract all the caffeine and theobromine from the chocolate into the water. To compute the quantity of analyte later, the total mass of water must be known. Denby and Scott knew the mass of chocolate residue in the centrifuge tube and they knew the mass of the empty Erlenmeyer flask. So they put the flask on a balance and added water drop by drop until there were 33.3 g of water in the flask. Later, they would compare known solutions of pure analyte in water with the unknown solution containing 33.3 g of water.

Before Denby and Scott could inject the unknown solution into a chromatograph for the chemical analysis, they had to clean up the unknown even further (Figure 0-3). The chocolate residue in water contained tiny solid particles that would surely clog their expensive chromatography column and ruin it. So they transferred a portion of the slurry to a centrifuge tube and centrifuged the mixture to pack as much of the solid as possible at the bottom of the tube. The cloudy, tan, **supernatant liquid** (liquid above the packed solid) was then filtered in a further attempt to remove tiny particles of solid from the liquid.

It is critical to avoid injecting solids into a chromatography column, but the tan liquid still looked cloudy. So Denby and Scott took turns between classes to repeat the centrifugation and filtration five times. After each cycle in which the supernatant liquid was filtered and centrifuged, it became a little cleaner. But the liquid was never completely clear. Given enough time, more solid always seemed to precipitate from the filtered solution. A solution of anything in water is called an **aqueous** solution.


FIGURE 0-3 Centrifugation and filtration are used to separate undesired solid residue from the aqueous solution of analytes.

The tedious procedure described so far is called **sample preparation**—transforming a sample into a state that is suitable for analysis. In this case, fat had to be removed from the chocolate, analytes had to be extracted into water, and residual solid had to be separated from the water.

Chemical Analysis (At Last!)

Denby and Scott finally decided that the solution of analytes was as clean as they could make it in the time available. The next step was to inject solution into a *chromatography* column, which would separate the analytes and measure the quantity of each. The column in Figure 0-4a is packed with tiny particles of silica (SiO_2) to which are attached long hydrocarbon molecules. Twenty microliters $(20.0 \times 10^{-6} \text{ liters})$ of the chocolate extract were injected into the column and washed through with a solvent made by mixing 79 mL of pure water, 20 mL of methanol, and 1 mL of acetic acid. Caffeine has greater affinity

FIGURE 0-4 Principle of liquid chromatography. (*a*) Chromatography apparatus with an ultraviolet absorbance monitor to detect analytes at the column outlet. (*b*) Separation of caffeine and theobromine by chromatography. Caffeine has greater affinity than theobromine for the hydrocarbon layer on the particles in the column. Therefore, caffeine is retained more strongly and moves through the column more slowly than theobromine.

Chromatography solvent is selected by a systematic trial-and-error process described in Chapter 25. Acetic acid reacts with negative oxygen atoms on the silica surface. When not neutralized, these oxygen atoms tightly bind a small fraction of caffeine and theobromine.

A section sector

silica- O^-	silica-OH
Binds analytes	Does not bind
very tightly	analytes strongly

than theobromine for the hydrocarbon on the silica surface. Therefore, caffeine "sticks" to the coated silica particles in the column more strongly than theobromine does. When both analytes are flushed through the column by solvent, theobromine reaches the outlet before caffeine (Figure 0-4b).

Analytes are detected at the outlet by their ability to absorb ultraviolet radiation from the lamp in Figure 0-4a. The graph of detector response versus time in Figure 0-5 is called a *chromatogram*. Theobromine and caffeine are the major peaks in the chromatogram. Small peaks arise from other substances extracted from the chocolate.

The chromatogram alone does not tell us what compounds are present. One way to identify individual peaks is to measure spectral characteristics of each one as it emerges from the column. Another way is to add an authentic sample of either caffeine or theobromine to the unknown and see whether one of the peaks grows in magnitude.

In Figure 0-5, the *area* under each peak is proportional to the quantity of compound passing through the detector. The best way to measure area is with a computer attached to the chromatography detector. Denby and Scott did not have a computer linked to their chromatograph, so they measured the *height* of each peak instead.

Calibration Curves

In general, analytes with equal concentrations give different detector responses. Therefore, the response must be measured for known concentrations of each analyte. A graph of detector response as a function of analyte concentration is called a **calibration curve** or a *standard curve*. To construct such a curve, **standard solutions** containing known concentrations of pure theobromine or caffeine were prepared and injected into the column, and the resulting peak heights were measured. Figure 0-6 is a chromatogram of one of the standard solutions, and Figure 0-7 shows calibration curves made by injecting solutions containing 10.0, 25.0, 50.0, or 100.0 micrograms of each analyte per gram of solution.

Straight lines drawn through the calibration points could then be used to find the concentrations of theobromine and caffeine in an unknown. From the equation of the theobromine

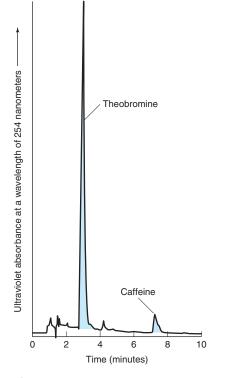
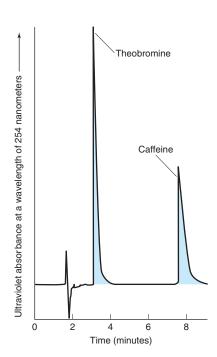
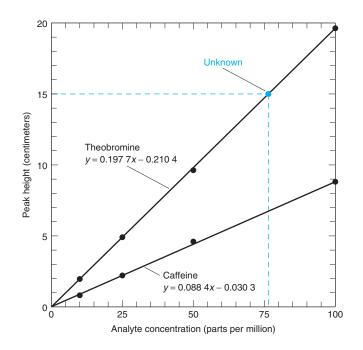




FIGURE 0-5 Chromatogram of 20.0 microliters of dark chocolate extract. A 150-mm-long \times 4.6-mm-diameter column, packed with 5-micrometer-diameter particles of Hypersil ODS, was eluted (washed) with water:methanol:acetic acid (79:20:1 by volume) at a rate of 1.0 mL per minute.

FIGURE 0-6 Chromatogram of 20.0 microliters of a standard solution containing 50.0 micrograms of theobromine and 50.0 micrograms of caffeine per gram of solution.

Only substances that absorb ultraviolet radiation at a wavelength of 254 nanometers are observed in Figure 0-5. The major components in the aqueous extract are sugars, but they are not detected in this experiment. FIGURE 0-7 Calibration curves show observed peak heights for known concentrations of pure compounds. One *part per million* is one microgram of analyte per gram of solution. Equations of the straight lines drawn through the experimental data points were determined by the *method of least squares* described in Chapter 4.

line in Figure 0-7, we can say that, if the observed peak height of theobromine from an unknown solution is 15.0 cm, then the concentration is 76.9 micrograms per gram of solution.

Interpreting the Results

Knowing how much analyte is in the aqueous extract of the chocolate, Denby and Scott could calculate how much theobromine and caffeine were in the original chocolate. Results for dark and white chocolates are shown in Table 0-1. The quantities found in white chocolate are only about 2% as great as the quantities in dark chocolate.

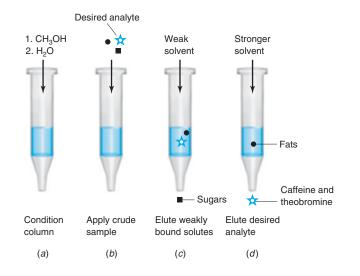
The table also reports the *standard deviation* of three replicate measurements for each sample. Standard deviation, discussed in Chapter 4, is a measure of the reproducibility of the results. If three samples were to give identical results, the standard deviation would be 0. If results are not very reproducible, then the standard deviation is large. For theobromine in dark chocolate, the standard deviation (0.002) is less than 1% of the average (0.392), so we say the measurement is reproducible. For theobromine in white chocolate, the standard deviation (0.007) is nearly as great as the average (0.010), so the measurement is poorly reproducible.

TABLE 0-1 Analyses of dark and white chocolate		
	Grams of analyte per	100 grams of chocolate
Analyte	Dark chocolate	White chocolate
Theobromine Caffeine	$\begin{array}{c} 0.392 \pm 0.002 \\ 0.050 \pm 0.003 \end{array}$	$\begin{array}{c} 0.010 \pm 0.007 \\ 0.000 \ 9 \pm 0.001 \ 4 \end{array}$

Average \pm standard deviation of three replicate injections of each extract.

The purpose of an analysis is to reach a conclusion. The questions posed earlier were "How much caffeine is in a chocolate bar?" and "How does it compare with the quantity in coffee or soft drinks?" After all this work, Denby and Scott discovered how much caffeine was in *one* particular chocolate bar that they analyzed. It would take a great deal more work to sample many chocolate bars of the same type and many different types of chocolate to gain a broad view. Table 0-2 compares results from analyses of different sources of caffeine. A can of soft drink or a cup of tea contains less than one-half of the caffeine in a small cup of coffee. Chocolate contains even less caffeine, but a hungry backpacker eating enough baking chocolate can get a pretty good jolt!

TABLE 0-2 Caffeine content of beverages and foods				
Source	Caffeine (milligrams per serving)	Serving size ^a (ounces)		
Regular coffee	106–164	5		
Decaffeinated coffee	2–5	5		
Tea	21–50	5		
Cocoa beverage	2–8	6		
Baking chocolate	35	1		
Sweet chocolate	20	1		
Milk chocolate	6	1		
Caffeinated soft drinks	36–57	12		
Red Bull	80	8.2		


a. 1 ounce = 28.35 grams

DATA SOURCES: http://www.holymtn.com/tea/caffeine_content.htm. Red Bull from http://wilstar.com/caffeine.htm.

Simplifying Sample Preparation with Solid-Phase Extraction

The procedure followed by Denby and Scott in the mid-1990s was developed before *solid-phase extraction* (page 785) came into use. Today, solid-phase extraction simplifies sample preparation by separating some major interfering components of the mixture from the desired analytes.⁵ The procedure shown in Figure 0-8 features a short, disposable column containing a chromatography solid phase that can clean the sample enough prior to performing chromatography on an expensive analytical column.

Denby and Scott extracted fat with organic solvent. Then they extracted caffeine and theobromine with hot water and laboriously removed fine particles by repeated centrifugation and filtration. Solid-phase extraction in Figure 0-8 removes sugars, fats, and fine

FIGURE 0-8 Solid-phase extraction separates caffeine and theobromine from sugars and fats found in chocolate. Sugars wash right through the column because they are not attracted to the hydrocarbon that is covalently attached to the particles on the column. Fats are so soluble in the hydrocarbon that they are not washed off the column by methanol. Caffeine and theobromine are soluble in the hydrocarbon but are washed off the column with methanol.

particles from the aqueous sample, replacing the extraction with organic solvent, centrifugation, and filtration. Crushed whole chocolate (0.5 gram) is suspended in 20 mL of water at 80°C for 15 minutes to extract caffeine, theobromine, and other water-soluble components. A solid-phase extraction column containing 0.5 gram of silica particles with covalently attached hydrocarbons (like the particles on the column in Figure 0-4) is cleaned with 1 mL of methanol followed by 1 mL of water. When 0.5 mL of aqueous extract is applied to the column. Many water-soluble components such as sugars are washed through with 1 mL of water. Caffeine and theobromine are then washed from the column with 2.5 mL of methanol. Fats remain on the column. After evaporating the methanol to dryness, the residue is dissolved in 1 mL of water and is ready for chromatography. See Color Plate 36 near the center of this book for an example of solid-phase extraction.

0-2 General Steps in a Chemical Analysis

The analytical process often begins with a question that is not phrased in terms of a chemical analysis. The question could be "Is this water safe to drink?" or "Does emission testing of automobiles reduce air pollution?" A scientist translates such questions into the need for particular measurements. An analytical chemist then chooses or invents a procedure to carry out those measurements.

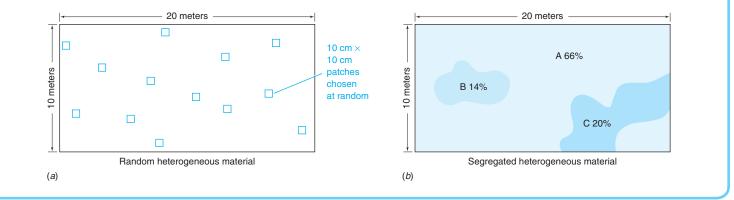
When the analysis is complete, the analyst must translate the results into terms that can be understood by others—preferably by the general public. A critical feature of any result is its reliability. What is the statistical uncertainty in reported results? If you took samples in a different manner, would you obtain the same results? Is a tiny amount (a *trace*) of analyte found in a sample really there or is it contamination from the analytical procedure? Only after we understand the results and their limitations can we draw conclusions.

Here are the general steps in the analytical process:

Formulating the question	Translate general questions into specific questions to be answered through chemical measurements.
Selecting analytical procedures	Search the chemical literature to find appropriate procedures or, if necessary, devise new procedures to make the required measurements.
Sampling	<i>Sampling</i> is the process of selecting representative material to analyze. Box 0-1 provides some ideas on how to do so. If you begin with a poorly chosen sample or if the sample changes between the time it is collected and the time it is analyzed, results are meaningless. "Garbage in—garbage out!"
Sample preparation	Converting a representative sample into a form suitable for analysis is called <i>sample preparation</i> , which usually means dissolving the sample. Samples with a low concentration of analyte may need to be concentrated prior to analysis. It may be necessary to remove or <i>mask</i> species that interfere with the chemical analysis. For a chocolate bar, sample preparation consisted of removing fat and dissolving the desired analytes. Fat was removed because it would interfere with chromatography.
Analysis	Measure the concentration of analyte in several identical aliquots (portions). The purpose of <i>replicate measurements</i> (repeated measurements) is to assess the variability (uncertainty) in the analysis and to guard against a gross error in the analysis of a single aliquot. <i>The uncertainty of a measurement is as important as the measurement itself</i> because it tells us how reliable the measurement is. If necessary, use different analytical methods on similar samples to show that the choice of analytical method is not biasing the result. You may also wish to construct several different samples to see what variations arise from your sampling and sample preparation procedure.
Reporting and interpretation	Deliver a clearly written, complete report of your results, highlighting any limitations that you attach to them. Your report might be written to be read only by a specialist (such as your instructor), or it might be written for a general audience (such as a legislator or newspaper reporter). Be sure the report is appropriate for its intended audience.
Drawing conclusions	Once a report is written, the analyst might not be involved in what is done with the information, such as modifying the raw material supply for a factory or creating new laws to regulate food additives. The more clearly a report is written, the less likely it is to be misinterpreted by those who use it.
Most of this book	deals with measuring chemical concentrations in homogeneous

Most of this book deals with measuring chemical concentrations in homogeneous aliquots of an unknown. Analysis is meaningless unless you have collected the sample properly, you have taken measures to ensure the reliability of the analytical method, and you communicate your results clearly and completely. The chemical analysis is only the middle portion of a process that begins with a question and ends with a conclusion.

Chemists use the term **species** to refer to any chemical of interest. Species is both singular and plural.


Interference occurs when a species other than analyte increases or decreases the response of the analytical method and makes it appear that there is more or less analyte than is actually present.

Masking is the transformation of an interfering species into a form that is not detected. For example, Ca^{2+} in lake water can be measured with a reagent called EDTA. AI^{3+} interferes with this analysis because it also reacts with EDTA. AI^{3+} can be masked with excess F⁻ to form AIF_6^{3-} , which does not react with EDTA.

BOX 0-1 Constructing a Representative Sample

In a **random heterogeneous material**, differences in composition occur randomly and on a fine scale. When you collect a portion of the material for analysis, you obtain some of each of the different compositions. To construct a representative sample from a heterogeneous material, you can first visually divide the material into segments. A **random sample** is collected by taking portions from the desired number of segments chosen at random. If you wanted to measure the magnesium content of the grass in the 10-meter \times 20-meter field in panel *a*, you could divide the field into 20 000 small patches that are 10 centimeters on a side. After assigning a number to each small patch, you could use a computer program to pick 100 numbers at random from 1 to 20 000. Then harvest and combine the grass from each of these 100 patches to construct a representative bulk sample for analysis.

For a **segregated heterogeneous material** (in which large regions have obviously different compositions), a representative **composite sample** must be constructed. For example, the field in panel *b* has three different types of grass segregated into regions A, B, and C. You could draw a map of the field on graph paper and measure the area in each region. In this case, 66% of the area lies in region A, 14% lies in region B, and 20% lies in region C. To construct a representative bulk sample from this segregated material, take 66 of the small patches from region A, 14 from region B, and 20 from region C. You could do so by drawing random numbers from 1 to 20 000 to select patches until you have the desired number from each region.

Terms to Understand

Terms are introduced in **bold** type in the chapter and are also defined in the Glossary.

aliquot analyte aqueous calibration curve composite sample decant heterogeneous homogeneous interference masking qualitative chemical analysis quantitative chemical analysis quantitative transfer random heterogeneous material random sample sample preparation sampling segregated heterogeneous material slurry species standard solution supernatant liquid

Problems :

Complete solutions to Problems can be found in the *Solutions Manual*. Short answers to numerical problems are at the back of the book.

0-1. What is the difference between *qualitative* and *quantitative* analysis?

0-2. List the steps in a chemical analysis.

0-3. What does it mean to *mask* an interfering species?

0-4. What is the purpose of a calibration curve?

0-5. (a) What is the difference between a homogeneous material and a heterogeneous material?

(b) After reading Box 0-1, state the difference between a segregated heterogeneous material and a random heterogeneous material.

(c) How would you construct a representative sample from each type of material?

0-6. The iodide (I^-) content of a commercial mineral water was measured by two methods that produced wildly different results.⁶ Method A found 0.23 milligrams of I^- per liter (mg/L) and method B found 0.009 mg/L. When Mn²⁺ was added to the water, the I^- content found by method A increased each time that more Mn²⁺ was added, but results from method B were unchanged. Which of the *Terms to Understand* describes what is occurring in these measurements? Explain your answer. Which result is more reliable?